No detail too small | MIT News

No detail too small | MIT News



mit sarah sterling

Sarah Sterling, director of the Cryo-Electron Microscopy, or Cryo-EM, core facility, often compares her job to running a small business. Each day brings a unique set of jobs ranging from administrative duties and managing facility users to balancing budgets and maintaining equipment.

Although one could easily be overwhelmed by the seemingly never-ending to-do list, Sterling finds a great deal of joy in wearing so many different hats. One of her most essential tasks involves clear communication with users when the delicate instruments in the facility are unusable because of routine maintenance and repairs.

“Better planning allows for better science,” Sterling says. “Luckily, I’m very comfortable with building and fixing things. Let’s troubleshoot. Let’s take it apart. Let’s put it back together.”

Out of all her duties as a core facility director, she most looks forward to the opportunities to teach, especially helping students develop research projects.

“Undergraduate or early-stage graduate students ask the best questions,” she says. “They’re so curious about the tiny details, and they’re always ready to hit the ground running on their projects.”

A non-linear scientific journey

When Sterling enrolled in Russell Sage College, a women’s college in New York, she was planning to pursue a career as a physical therapist. However, she quickly realized she loved her chemistry classes more than her other subjects. She graduated with a bachelor of science degree in chemistry and immediately enrolled in a master’s degree program in chemical engineering at the University of Maine.

Sterling was convinced to continue her studies at the University of Maine with a dual PhD in chemical engineering and biomedical sciences. That decision required the daunting process of taking two sets of core courses and completing a qualifying exam in each field. 

“I wouldn’t recommend doing that,” she says with a laugh. “To celebrate after finishing that intense experience, I took a year off to figure out what came next.”

Sterling chose to do a postdoc in the lab of Eva Nogales, a structural biology professor at the University of California at Berkeley. Nogales was looking for a scientist with experience working with lipids, a class of molecules that Sterling had studied extensively in graduate school.

At the time Sterling joined, the Nogales Lab was at the forefront of implementing an exciting structural biology approach: cryo-EM.

“When I was interviewing, I’d never even seen the type of microscope required for cryo-EM, let alone performed any experiments,” Sterling says. “But I remember thinking ‘I’m sure I can figure this out.’”

Cryo-EM is a technique that allows researchers to determine the three-dimensional shape, or structure, of the macromolecules that make up cells. A researcher can take a sample of their macromolecule of choice, suspend it in a liquid solution, and rapidly freeze it onto a grid to capture the macromolecules in random positions — the “cryo” part of the name. Powerful electron microscopes then collect images of the macromolecule — the EM part of cryo-EM. 

The two-dimensional images of the macromolecules from different angles can be combined to produce a three-dimensional structure. Structural information like this can reveal the macromolecule’s function inside cells or inform how it differs in a disease state. The rapidly expanding use of cryo-EM has unlocked so many mechanistic insights that the researchers who developed the technology were awarded the 2017 Nobel Prize in Chemistry. 

The MIT.nano facility opened its doors in 2018. The open-access, state-of-the-art facility now has more than 160 tools and more than 1,500 users representing nearly every department at MIT. The Cryo-EM facility lives in the basement of the MIT.nano building and houses multiple electron microscopes and laboratory space for cryo-specimen preparation.

Thanks to her work at UC Berkeley, Sterling’s career trajectory has long been intertwined with the expanding use of cryo-EM in research. Sterling anticipated the need for experienced scientists to run core facilities in order to maintain the electron microscopes needed for cryo-EM, which range in cost from a staggering $1 million to $10 million each.

After completing her postdoc, Sterling worked at the Harvard University cryo-EM core facility for five years. When the director position for the MIT.nano Cryo-EM facility opened, she decided to apply.

“I like that the core facility at MIT was smaller and more frequently used by students,” Sterling says. “There’s a lot more teaching, which is a challenge sometimes, but it’s rewarding to impact someone’s career at such an early stage.”

A focus on users

When Sterling arrived at MIT, her first initiative was to meet directly with all the students in research labs that use the core facility to learn what would make using the facility a better experience. She also implemented clear and standard operating procedures for cryo-EM beginners.

“I think being consistent and available has really improved users’ experiences,” Sterling says.

The users themselves report that her initiatives have proven highly successful — and have helped them grow as scientists.

“Sterling cultivates an environment where I can freely ask questions about anything to support my learning,” says Bonnie Su, a frequent Cryo-EM facility user and graduate student from the Vos lab.

But Sterling does not want to stop there. Looking ahead, she hopes to expand the facility by acquiring an additional electron microscope to allow more users to utilize this powerful technology in their research. She also plans to build a more collaborative community of cryo-EM scientists at MIT with additional symposia and casual interactions such as coffee hours.

Under her management, cryo-EM research has flourished. In the last year, the Cryo-EM core facility has supported research resulting in 12 new publications across five different departments at MIT. The facility has also provided access to 16 industry and non-MIT academic entities. These studies have revealed important insights into various biological processes, from visualizing how large protein machinery reads our DNA to the protein aggregates found in neurodegenerative disorders.

If anyone wants to conduct cryo-EM experiments or learn more about the technique, Sterling encourages anyone in the MIT community to reach out.

“Come visit us!” she says. “We give lots of tours, and you can stop by to say hi anytime.”



Source link

Podobné příspěvky